Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(12): e1009689, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962919

RESUMO

The design of efficient combination therapies is a difficult key challenge in the treatment of complex diseases such as cancers. The large heterogeneity of cancers and the large number of available drugs renders exhaustive in vivo or even in vitro investigation of possible treatments impractical. In recent years, sophisticated mechanistic, ordinary differential equation-based pathways models that can predict treatment responses at a molecular level have been developed. However, surprisingly little effort has been put into leveraging these models to find novel therapies. In this paper we use for the first time, to our knowledge, a large-scale state-of-the-art pan-cancer signaling pathway model to identify candidates for novel combination therapies to treat individual cancer cell lines from various tissues (e.g., minimizing proliferation while keeping dosage low to avoid adverse side effects) and populations of heterogeneous cancer cell lines (e.g., minimizing the maximum or average proliferation across the cell lines while keeping dosage low). We also show how our method can be used to optimize the drug combinations used in sequential treatment plans-that is, optimized sequences of potentially different drug combinations-providing additional benefits. In order to solve the treatment optimization problems, we combine the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm with a significantly more scalable sampling scheme for truncated Gaussian distributions, based on a Hamiltonian Monte-Carlo method. These optimization techniques are independent of the signaling pathway model, and can thus be adapted to find treatment candidates for other complex diseases than cancers as well, as long as a suitable predictive model is available.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Modelos Biológicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Algoritmos , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , Tomada de Decisões Assistida por Computador , Humanos
2.
bioRxiv ; 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32511322

RESUMO

The 2019 novel coronavirus, SARS-CoV-2, is a pathogen of critical significance to international public health. Knowledge of the interplay between molecular-scale virus-receptor interactions, single-cell viral replication, intracellular-scale viral transport, and emergent tissue-scale viral propagation is limited. Moreover, little is known about immune system-virus-tissue interactions and how these can result in low-level (asymptomatic) infections in some cases and acute respiratory distress syndrome (ARDS) in others, particularly with respect to presentation in different age groups or pre-existing inflammatory risk factors. Given the nonlinear interactions within and among each of these processes, multiscale simulation models can shed light on the emergent dynamics that lead to divergent outcomes, identify actionable "choke points" for pharmacologic interventions, screen potential therapies, and identify potential biomarkers that differentiate patient outcomes. Given the complexity of the problem and the acute need for an actionable model to guide therapy discovery and optimization, we introduce and iteratively refine a prototype of a multiscale model of SARS-CoV-2 dynamics in lung tissue. The first prototype model was built and shared internationally as open source code and an online interactive model in under 12 hours, and community domain expertise is driving regular refinements. In a sustained community effort, this consortium is integrating data and expertise across virology, immunology, mathematical biology, quantitative systems physiology, cloud and high performance computing, and other domains to accelerate our response to this critical threat to international health. More broadly, this effort is creating a reusable, modular framework for studying viral replication and immune response in tissues, which can also potentially be adapted to related problems in immunology and immunotherapy.

3.
Methods Mol Biol ; 1945: 203-229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945248

RESUMO

Spatial heterogeneity can have dramatic effects on the biochemical networks that drive cell regulation and decision-making. For this reason, a number of methods have been developed to model spatial heterogeneity and incorporated into widely used modeling platforms. Unfortunately, the standard approaches for specifying and simulating chemical reaction networks become untenable when dealing with multistate, multicomponent systems that are characterized by combinatorial complexity. To address this issue, we developed MCell-R, a framework that extends the particle-based spatial Monte Carlo simulator, MCell, with the rule-based model specification and simulation capabilities provided by BioNetGen and NFsim. The BioNetGen syntax enables the specification of biomolecules as structured objects whose components can have different internal states that represent such features as covalent modification and conformation and which can bind components of other molecules to form molecular complexes. The network-free simulation algorithm used by NFsim enables efficient simulation of rule-based models even when the size of the network implied by the biochemical rules is too large to enumerate explicitly, which frequently occurs in detailed models of biochemical signaling. The result is a framework that can efficiently simulate systems characterized by combinatorial complexity at the level of spatially resolved individual molecules over biologically relevant time and length scales.


Assuntos
Biologia Computacional/métodos , Transdução de Sinais/genética , Software , Algoritmos , Ciclo Celular/genética , Simulação por Computador , Cinética , Modelos Biológicos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...